On the Randic and Sum-Connectivity Index of Nanotubes
نویسندگان
چکیده
منابع مشابه
Some new bounds on the general sum--connectivity index
Let $G=(V,E)$ be a simple connectedgraph with $n$ vertices, $m$ edges and sequence of vertex degrees$d_1 ge d_2 ge cdots ge d_n>0$, $d_i=d(v_i)$, where $v_iin V$. With $isim j$ we denote adjacency ofvertices $v_i$ and $v_j$. The generalsum--connectivity index of graph is defined as $chi_{alpha}(G)=sum_{isim j}(d_i+d_j)^{alpha}$, where $alpha$ is an arbitrary real<b...
متن کاملon the general sum–connectivity co–index of graphs
in this paper, a new molecular-structure descriptor, the general sum–connectivity co–index is considered, which generalizes the first zagreb co–index and the general sum–connectivity index of graph theory. we mainly explore the lower and upper bounds in termsof the order and size for this new invariant. additionally, the nordhaus–gaddum–type resultis also represented.
متن کاملOn Sum–Connectivity Index of Bicyclic Graphs
We determine the minimum sum–connectivity index of bicyclic graphs with n vertices and matching number m, where 2 ≤ m ≤ ⌊n2 ⌋, the minimum and the second minimum, as well as the maximum and the second maximum sum–connectivity indices of bicyclic graphs with n ≥ 5 vertices. The extremal graphs are characterized. MSC 2000: 05C90; 05C35; 05C07
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of West University of Timisoara - Mathematics
سال: 2013
ISSN: 1841-3293
DOI: 10.2478/awutm-2013-0014